Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Anatomy education is an indispensable part of medical training, but traditional methods face challenges like limited resources for dissection in large classes and difficulties understanding 2D anatomy in textbooks. Advanced technologies, such as 3D visualization and augmented reality (AR), are transforming anatomy learning. This paper presents two in-house solutions that use handheld tablets or screen-based AR to visualize 3D anatomy models with informative labels and in-situ visualizations of the muscle anatomy. To assess these tools, a user study of muscle anatomy education involved 236 premedical students in dyadic teams, with results showing that the tablet-based 3D visualization and screen-based AR tools led to significantly higher learning experience scores than traditional textbook. While knowledge retention didn’t differ significantly, ethnographic and gender analysis showed that male students generally reported more positive learning experiences than female students. This study discusses the implications for anatomy and medical education, highlighting the potential of these innovative learning tools considering gender and team dynamics in body painting anatomy learning interventions.more » « less
-
null (Ed.)Although synthetic organic electrochemistry (EC) has advanced significantly, net redox neutral electrosynthesis is quite rare. Two approaches have been employed to achieve this type of electrosynthesis. One relies on turnover of the product by the reactant in a chain mechanism. The other involves both oxidation on the anode and reduction on the cathode in which the radical cation or the radical anion of the product has to migrate between two electrodes. Herein, a home-built electrochemistry/mass spectrometry (EC/MS) platform was used to generate an N -cyclopropylaniline radical cation electrochemically and to monitor its reactivity toward alkenes by mass spectrometry (MS), which led to the discovery of a new redox neutral reaction of intermolecular [3 + 2] annulation of N -cyclopropylanilines and alkenes to provide an aniline-substituted 5-membered carbocycle via direct electrolysis (yield up to 81%). A chain mechanism, involving the regeneration of the substrate radical cation and the formation of the neutral product, is shown to be responsible for promoting such a redox neutral annulation reaction, as supported by experimental evidence of EC/MS.more » « less
An official website of the United States government
